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Exact results for average cluster numbers in bond percolation on lattice strips
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We present exact calculations of the average number of connected clusters kY, sitea function of bond
occupation probabilityp, for the bond percolation problem on infinite-length strips of finite widjhof the
square, triangular, honeycomb, and kagomé lattitesith various boundary conditions. These are used to
study the approach dk), for a givenp and A, to its value on the two-dimensional lattice as the strip width
increases. We investigate the singularities(lof in the complexp plane and their influence on the radii of
convergence of the Taylor series expansiongkpfaboutp=0 andp=1.
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I. INTRODUCTION We take the longitudinal and transverse directions ta be
The study of percolation gives insight into a number ofandy and denote the size of the lattice strips in these direc-

important phenomena such as the passage of fluids throud?"S @skx andL, and the respective boundary conditions as
porous media and the effect of lattice defects and disorder ofCx @nd BG. We focus on the limit of infinite lengthl,,
critical phenomena. Here we consider bond percolation. Let” %> for which the results are independent of the longitudi-
G=G(V,E) be a connected graph defined by a i ver- nal boundary condmons. For an infinite-length strip of a lat-
tices(siteg and a seE of edgestbonds connecting pairs of 1iC€ A, as the widthl, —oo, one expectsk) to approach a
vertices. We denote the number of vertices and bonds as 'IMiting function of p which is independent of the transverse
=n(G)=|V| ande(G)=|E]. In the usual statistical mechanics Poundary conditions and is equal{d for the corresponding
context, one is interested incadimensional thermodynamic infinite two-dimensional lattice\. In particular, for a given
limit of a regular lattice grapm in which the bonds are infinite-length, finite-width strip of th'e latticd, it is of in-
present with probabilityp. Consider the probabilit(A,p)  terest to evaluate our exact expressionskpmat p=pc,, and
that a given site belongs to an infinite cluster. For a giverStudy how the resultant value approaches the critical value
lattice A, asp decreases from IP(A,p) decreases mono- (k)c,a for the corresponding infinite two-dimensional lattice.
tonically until, at a critical valuep, ,, it vanishes and re- For a given graptG=(V,E) we calculatek) by making
mains identically zero for & p=<p, ,. An interesting quan- use of the equations

tity in this context is the number of connected components

(clusters, including single sites, for a given lattick, di- df(G,q,vp)
vided by the number of sites on the lattice and averaged over (kn= T(?p_ = (1.9
all of the graphs in the above ensemble. We denote this mean a1
cluster number per site d&),. Reviews on percolation in- \\hare
clude[1-3].
In this paper we present exact calculations of this average
cluster number per siték), as a function ofy, for a variety v=v,= 1Lp (1.2

of infinite-length, finite-width strips of regular latticd4].

We consider strips of the square, triangular, honeycomb, and )
kagomé lattices. These are of interest since, at least for mod(G.d,v) is the reduced free energy of thpstate Potts
est strip widths, one can obtain explicit analytic expressiongnodel on the grapl® [S], and in the limitn— o

for (k) and can exactly determine, e.g., singularities that

these expressions have in the compteglane and their in- = dt({G},q,vp) (1.3
fluence on series expansions. Our results interpolate between aq q:l' '

the known exact solutions for the one-dimensional lattice

(line) and the case of two dimensio®r which (k) is not  where {G} denotes the formal limit lig_..G for a given

known exactly as a function qf), and complement numeri- family of graphs. Our method for calculatiig) is to use Eq.

cal simulations and series expansions. (1.3) in conjunction with exact results that we have com-
puted for the free energy of the Potts model on infinite-
length, finite-width strips of various latticd6—16].

*Present address: Physics Dept., National Cheng Kung Univer- As background for our exact results, we note some basic
sity, Tainan, Taiwan. Email address: scchang@mail.ncku.edu.tw properties of (k): (i) lim, o(ky,=lim, o(ky=1; (i)
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Iimpél<k)n=1/n and hence Iirpél(k)zo; (iii) for a given TABLE I. Values of(k) on infinite-length strips of the lattice’s
{G}, (k) is a monotonically decreasing function pffor p ~ (where sq,tri,hc,kag denote square, triangular, honeycomb, and
e [0, 1]. For the infinite-length, finite-width strips considered kagome of finite widthL, atp=p ,. The transverse boundary con-

here (k) is a(real) analytic function ofp for p [0, 1]; how- dltlon_s (BCy) areF and P for free and p(_erlodlc, respectlvely._We
. . . . . also include results for the self-du@ld) strips of the square lattice.
ever, this quantity may have singularities at unphysical val-

. . . . The effective coordination numbei; is defined in Eq(6.1). The
ues ofp, including real values outside the intervakp=1 Ly=c values of(k)p=, A are the values for the two-dimensional

and complex values, as will be dis'cusseq f.urther beloyv. latticesA [24,25 where these are known exactly, and the dashes for
The property thatk) (calculated in the limit af,—®) iS  these entries indicate that they do not depend op.BC
independent of the longitudinal boundary conditions im

posed on the lattice strip follows from the same property fora BC, Ly Keft (Kpp
the Potts model free energy. We further expect that, for a e
given transverse boundary condition and for a giyen Sd F 1 2 0.50000
e[0,1], the value of(k) for an infinite-length strip of the sq F 2 3 0.28571
lattice A approaches the corresponding valug(k)f for the  sq F 3 3.33 0.21940
(infinite) two-dimensional lattice\ asL,— o. sq F 4 3.50 0.18753
Our exact results give insight into a feature of Taylor gq E 5 3.60 0.16887
series expansions in percolation, calculated arqul and ¢ p 2 4 0.20000
p=1, namely, the fact that the radii of convergence of thes% P 3 4 014103
series expansions around these respective points are typica g b 4 4 0'1 2150
set by unphysical singularities and are less than the distan '
from the expansion point to the physical singularipy,,. sq P ° 4 0.11284
Our results exhibit the same feature: althogghitself is an ~ sd sd 1 4 0.16667
analytic function ofp for p [0, 1], Taylor series expansions sq sd 2 4 0.14407
aboutp=0 andp=1 typically have radii of convergence less sq sd 3 4 0.132545
than unity, set by unphysical singularities (@f. sq sd 4 4 0.12561
sq w 4 0.09808
Il. STRIPS OF THE SQUARE LATTICE tri F 2 4 0.35958
A L=l tri F 3 4.67 0.27149
The well-known result i F 4 > 0.22946
tri F 5 5.20 0.20491
(Kip=1-p (2.)  tri P 2 6 0.19091
for the infinite line can be derived directly using probability tri P 3 6 0.14665
methods. Here we illustrate how it can be derived via Eql" P 4 6 0.13138
(1.3). An elementary calculation yields the Potts free energytri - ® 6 0.11184
f(1D,q,v)=In(g+v). Using Eq.(1.3) yields the above result hc F 2 2.50 0.20475
for (k)1p. This has the value 1/2 gt=p. s, [17] (see Table)l hc F 3 2.67 0.16000
hc F 4 2.75 0.13834
B. Free transverse boundary conditions hc F 5 2.80 0.12560
ForL,=2, we label an infinite-length strip of width, of ~ hc P 4 3 0.08983
the latticeA with given transverse boundary conditions BC hc - o 3 0.07687
as A,(Ly)gc . In particular, theL,=2 square-lattice strips kag F 2 3.2 0.22918
with free (F>5 and periodic(P) transverse boundary condi- kag F 3 3.5 0.17220
tions are denoted sqgz2nd sq, 2. kag p 2 4 0.11149
1. 2¢
The free energy of the Potts model for the sgskip is Tor =v3+ 402+ 3qv + 2, (2.9
(6]
f(s9,2,0,0) = %‘” NsqF 1 2.2 P =00+ 40— 200" - 20°7 + 1207+ 1600° + 13070
+6q% +q°. (2.5
where
1 —_— In EqQ.(2.3) only thej=1 term is relevant for the free energy,
Nsq. ) = E(TSZFi VRye) (2.3 while thej=2 term will be discussed below.
From Eq.(2.2) we calculate the average cluster number
with j=1,2 corresponding to + and per site
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(K)sq,2. Is a rational function op. However, this is a conse-
quence of the small value &f,. The same comment applies
to the property thatk)s,, is meromorphic, i.e., its only
singularities are simple poles. As will be seen, these features
are also true of the cluster numbgg for otherL,=2 strips
considered here.

In this very simple context of a quasi-one-dimensional
(quasi-1D strip, one hence gains some insight into the simi-
lar influence of unphysical singularities in series expansions
aboutp=0 andp=1 for percolation on higher-dimensional

: S lattices. To understand these poles more deeply, we observe
o ‘ that although the free enerdysq, 2-,q,v) depends only on
. . . Nsq,x,1, the partition function for free longitudinal boundary

FIG. 1. Plots Of<k> (Vertlcal aXlS as a function Opr[O,l] Conditions[lg] andq;& 1in genera' is a Symmetric sum of
(horizontal axi$ for infinite-length, finite-width strips of the square L,th powers of both of thas, zj's for j=1 andj=2 [given
lattice. The dashed and solid curves refer to free and periodic trang;g Eq.(5.17) of Ref. [6]]. We are interested in the limg
verse boundary conditions, respectively. For a gipethe dashed . 1 |t g necessary to take account of a subtlety concerning
curves are, in order of descending valuglk)f for 1< (Ly)r <5, the dependence of the complaxphase boundan of the
and the solid curves are, in the same order, {o=2L)p<5p. Potts model, as a function of In previous work[see Egs.
(2.8+2.12 of Ref. [6] and Eq. (1.9 of Ref. [19]] we
pointed out the noncommutativity at certain special values of

_(1-pX2+p-2p?)

(Ksqz.= 21-p?+p’) (2.6 Js, includinggs=0,1, namely
This is plotted in Fig. 1 together with cluster numbers calcu- lim lim Z(G,q,0)"" # lim limZ(G,q,0)*" (2.10
lated for other strips. Ap=p.s,=1/2, this average cluster =% 60 =0 N2
number has the vaIu(Ek)quF:Z/?z 0.285 71. and we noted that, because of this noncommutativity, for the
From the exact expression fdk)s,, we compute the special set of pointsj=qgs one must distinguish betwegn
respective Taylor series expansions (B({G},qs))nq, the continuous accumulation set of the zeros
3 1 1 of Z(G,q,v) obtained by first setting=gs and then taking
— bt = =6 , ii , , th ti lati
(Koqz =1~ 2p+ 2p4+ 2p +O(p’) for p—0 n—oo, and (i) (B({G},qs)qn the continuous accumulation

set of the zeros 0Z(G,q,v) obtained by first takingn— o,
(2.7 and then taking— gs. For these special points,

and, in terms of the variable=1-p, (B{G},d9))ng # (BUG},d9)gn- (2.11

1 7 A previous case of this was theg=2 (Ising) special case of
(K)sq,2. = §r2+ 2r3- Ers*’o(rﬁ) for r—0. (2.8)  the Potts model. Indeed, in that case it was noted Bat
does not have the inversion symme#y— e ¥ that charac-
Thus for this strip(k) is linear for smallp and vanishes terizes the Ising model and its complex-temperature phase
quadratically ap— 1. As expected for such a small width, boundaryB, for a bipartite latticesee pp. 396, 433—-435 of
these series differ from the series for ttigfinite) square Ref.[6]). This noncommutativity is also present at the value
lattice, although the linear behavior for smplis commonto g=1 relevant for percolation. If one uses the definitigg,
both. with g=1 for percolation, as one uses the definitigyp with
The expression foxk) for this strip has singularities, q=2 for the Ising model, then whil&, is nontrivial for the
which are simple poles, where the denominatorpd+p® Ising model, B, is trivial for the percolation problem. The
=0, at reason for this is that if one setg=1 first, then, from the
Hamiltonian definition of the Potts model, since the spins are
p=-0.7549, 0.8774+0.7449 (2.9 the same on all sites, the spin-spin interactions on each bond

The first of these poles is the closest to the origin and detef€ontribute a factoe to the partition function, so one has the
mines the radius of convergence of the snallaylor series ~ €lementary result

in Eq. (2.7) to be approximately 0.7549. The complex pair Z2(G,1,0) =K &0 = (p + 1)%0), (2.12
are the same distance from the pgistl and imply that this

series converges fdil —p|<0.7549. Thus, althougtk)s;,  Substitutingu=v, as in Eq.(1.2) gives

is an analytic function op for pe[0,1], the Taylor series — (1 _ -€(G)

expansions aboyt=0 andp=1 have radii of convergence 26, Lop) =1 =P (213
less than unity because of singularities of this function at reaEvidently, Z(G,1,v,) has no zeros, so tha,,=g in the
and complex values outside the physical intervall<1.1t  complexp plane. EquivalentlyZ(G,1,v) has only a single
is interesting that althougmsqgF is an algebraic function af  zero at the poinb=-1, which maps, via Eq(1.2), to the
[and hencep, via Eq. (1.2)], the resultant expression for circle at infinity in the complexp plane. We have noted
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terval O<p=1 lies entirely in one phase. The three poles of
<k>sq'2F listed in Eq.(2.9) lie on this boundans,.

04 2. 3;:,41:,5':

The Potts model free enerdyfor the infinite-length sq,3
o5 i C strip was calculated in Ref7]. The free energy is given by
f(sq,3,q,v)=(1/3)In Asq,3 where)\sqgF is the (maximal)
root of an algebraic equation of degree 4. Because of the
complicated nature of the expression for this quartic root, we
do not present it here. We have calculatésty, 3-,q,v), and
hence(k)sq 3., to high precision by numerically solving for

FIG. 2. Plot of the boundarg, in the complex+p plane for the f(sa,%,q,v) for a range of values of near unity, for each

infinite-length sq, 2 lattice strip. Horizontal and vertical axes are Valué ofp, and carrying out the differentiation in EqL.3).
Re(p) and Im(p). Although this is numerical, the computational steps can be

carried out with almost arbitrarily high precision, so that, in
practice, it is essentially equivalent to evaluating an explicit
exact analytic expression. We also apply this procedure for
larger strip widths, using the exact calculationfdbr sq, 4

and sq, 5 in Ref.[14] (see alsq16]). The resulting values of
(k) are plotted as functions qf in Fig. 1, and the values of
(k) at p=p. sq=1/2 arelisted in Table I. One could carry out
similar calculations okk) for larger values ofL,, but our
results are sufficient to show the nature of the approach of

means that it is sensitive to properties of the Potts model iﬁk> on these infinite-length, finite-width st_rips tP t_h? average

the neighborhood of the poim=1 as well as at this point. Cluster number for the corresponding infinite two-

This suggests that one consider the possible role of the loclimensional lattice. Indeed, one of the most interesting

Bgyn, although one must use caution in doing this because df'€c€s of |r.1formfat|'on t?a’g we git f'ron; our reslults, tTe exact

the noncommutativity discussed above. Below we shall us@€t€rmination of singularities dk) in the complexp plane

the notation,, to mean specifically the boundary defined and their effect on the radii of convergence of series expan-

for n—o andg— 1, relevant to the percolation problem.  Sions, can be obtained only for strip widths that are small
We find some intriguing connections between the locusnough so that we can get exact explicit analytical forms for

By, and complexp singularities inKk). Let us first calculate

By, for the sq,2 strip in the limit g— 1. Evaluating Eq.

above that, in general, fay# 1, the partition function of the
Potts model consists of a symmetric sumLgth powers of
Asqz.1 @nd Asq, o) if one setsq=1, the coefficient of
(Nsg2.2™ vanishes, and the\gg 2. )™ term, with its coeffi-
cient, reduces to the forif2.13) (where in the labeling con-
vention of Ref.[6], L,+1 denotes the number of squares on
the sq, 2 strip).

However, the fact that Eq(1.3) involves a derivative

(2.3) for g— 1, we obtain C. Periodic transverse boundary conditions
1 1.2
NsqF1= 773 (2.149 . - "
1-p) By using periodic transverse boundary conditions, one
minimizes finite-width effects in this transverse direction. We
and consider first the sq 2strip. Note that this strip has double
0? transverse bonds. The free energy was computed in[Ref.
N =—. 2.1 and is given b
sq,&,2 (1 _ p)z ( 5) g y )
The locusBy, is the set of solutions of the equation of de- f(sq,%,q,v) = Eln Nsq, 2,1 (2.17)

generacy in magnitude of dominanis. This locus can be

seen as a special case of the more general phase boundary {giere

the Potts model in the plane for a fixedy, or in theq plane 1

for a fixedv. For the present case, since there are only two N = (T + VRoo 218
Nsqzj'S, for j=1,2,this equation i\s, z 1/ =[Asq x 2, i-€., 50 = 5(Top * \Rep) (2.19

Ip?(1-p)|=1. (2.1  with j=1,2 corresponding to + and

In terms of the polar coordinatgs=pe'? this equation reads Top=6v”+4qu + P+ 43+ qu’+v*  (2.19
p*(1+p®—2p cos 6)=1. The solution is a closed egg-shaped ;g

curve, shown in Fig. 2, that crosses the rpaxis atp=

-0.7549 andp=1.466 and the imaginary- axis at p Rop = (v* + 6v° + 802 + 3qu2 + 6qv + ?)
=+0.8688. This thus constitutes the phase boundary in the a 3 2_ 2 2
complexp plane, separating this plane into two regions. As XS+ 20T+ 40T - quTh 20+ ). (2.20
follows from the general discussion above, the physical infrom this, using Eq(1.3), we calculate
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_ (1-p?2-3°+2p’

21+p-p)(1-p+p)’
At the value ofp.sq=1/2 for theinfinite square lattice this
has the vaIuék)sq,QP:1/5.

The expressioli2.21) has poles where 1p—p? vanishes,
at

<k>sq,2p (2-21)

1 =
pio=5(1£\5)=1618, -0.6180, (2.22
and where 1p+p? vanishes, at

1 !,_.
Paa= (1 3i) =0.5+0.866. (2.23

PHYSICAL REVIEW E 70, 056130(2004)

FIG. 3. Plot of the boundari, in the complexp plane for the
infinite-length sq, 2 lattice strip. Horizontal and vertical axes are

Re(p) and In(p).

The second and first of these poles are closest to the points

p=0 andp=1 and determine the radii of convergence of thejie on the complex-temperature phase boundaries for these
respective Taylor series expansions about these points bofRodels, as we have studied in earlier w§2k—23. Having

to be 0.618. These expansions are

1
<k>sq,2p =1-2p+ Epz +2p*+O(p°) (2.29

and

1
(Ksqz, = T2+ 2t =27+ O(1°). (2.25

pointed out the connection between these singularities and
the locusB,, we shall, for the strips considered below, just
summarize the singularities ¢k).

2. 3p,4p,5p

For the sq, 8 strip, f(sq,3,9,v)=(1/3)In Agq 3, Where
Asq3, is the (maximal) root of a cubic equation. Although it
is possible to display an analytic result f@sqvgp, it is suf-

Note that, in accord with the fact that the coordination num-ficiently cumbersome that we do not give it here. It is an
ber of this and any infinite-length lattice strip of the squarealgebraic, rather than rational, function pfWe do display
lattice with periodic transverse boundary conditions is 4, thehe small-p expansion, which is

coefficient of the linear term in the small-expansion is
equal to that of the expansion for the full square lattice.

We next discuss the connection of the poles(kiyg ,,
with the locusB,. Althoughf(sq,2,q,v) depends only on
the quantityhg, 1, the Potts model partition function for
g# 1 involves a symmetric sum of,th powers of both
Asqp1 and hgq o [14]. Evaluatinghgq »; for g—1, we
have

1

(2.26

p2

Y22 (g

(2.27

The locus By, is the set of solutions of the equation
Mg p1/= Mg 2, i€,

Ip(1-p)|=1. (2.289

Waqp=1-2+p7+p+0). (229
The free energyf was calculated for the sgpdand sq,5
strips in Ref.[14], andxsq,‘b and A5, are roots of equations
of too high a degree to allow an explicit analytic solution.
Accordingly, we computgk) by the numerical procedure
discussed above. Results are given in Fig. 1 and Table I.

D. Self-dual strips of the square lattice

It is of interest to calculaték) for strips of the square
lattice that maintain a property of the infinite square lattice,
namely, self-duality. The strips with free and periodic trans-
verse boundary conditions considered above are not self-
dual. However, one can construct a cyclic strip that is self-
dual by adding a single external site to a cyclic square-lattice
strip of widthL, and then adding bonds connecting all of the
sites on one side of the strip to this single external site. We

In terms of the polar coordinates defined above, this equatiogenote a self-dualsd) strip of this type as sdl.,)ss Before

reads p?(1+p?-2p cos)=1. The solution forms a closed
oval curve in the complexp plane, shown in Fig. 3, that
crosses the real axis at the poipis, in Eqg. (2.22 and the
imaginary axis at the poin{z= +£0.786 15%. As in the case of
the sq,2 strip, this curve separates the plane into two
regions. All of the four poles ofk)sq 5, given in Eqs.(2.22
and(2.23 lie on this curveB,. This property—that the sin-
gularities of(k) lie on By,—is analogous to the property that

presenting our calculations, a remark is in order concerning
p. for these strips. The physical meaning mf for a usual
infinite lattice is, as mentioned before, that for p. there
exists a percolation cluster linking two points that are an
arbitrarily large distance apart. Now consider the simplest of
the cyclic self-dual lattice graphs, with,=1; this is a wheel
graph, having a rim forming a circuit and a central gite
axle) connected to the sites on the rim by bonds forming

the singularities of thermodynamic functions of spin modelsspokes. Evidently, even in the limit,— o, the maximum
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distance between any two sites on this lattice graph is two Y
bonds; to get from any site on the rim to any other site, one

takes a minimum-distance route that goes inward along one 0s
spoke to the central site and out again on another spoke to

the other site. Similarly, for any finité,, even asL,— 0s
there is a maximal finite distancé 2bonds between any two <«
sites. Therefore, although this family of cyclic lattice strips 04]
does maintain the property of self-duality of the infinite

square lattice, the notion of a criticgl beyond which there 0z
is a percolation cluster linking two sites arbitrarily apart is

not applicable to it since no sites are arbitrarily far apart.

p

1.1y

. FIG. 4. Plots of(k), as a function ofpe[0,1], for infinite-
The free energy i$10,13

length, finite-width self-dual strips of the square lattice. For a given
(2.30 p, in order of descending value ¢k, the curves refer to are for

(s, ke qv) =In Nggy 0= (Ly)sg=<4sq
1= sd™="s

where
Ill. STRIPS OF THE TRIANGULAR LATTICE
Nsd1= (T3d1+ \RS‘“) (2.31) A. Free transverse boundary conditions
with 1.2
To=30+q+0%, (2.3 The free energy for the Potts model on this stripgk
. 1
Req1= 502+ 2vq+ 203 + g2 - 20%q+v*.  (2.33 f(t”azFan):Eln Aor (3.9
From this we calculate where
1-p°
Ksq.1,= : 2.3 1 —
Ksazy 1-p+p? (239 AoF = E[TtZF +(3v + 02+ q)VRyr] (3.2
We have(k)se| 1, =1/6 atp=p.sq The mean cluster num- with
ber (k) in Eq. (2.34 has the following Taylor series expan-
sions forp—0 andp— 1: Tor =v*+ 403+ 702 + 4qu + P (3.3
(Ksqy,=1=2+p>+p*=p°-p’+p°+0(p'), and
(2.39 Ror = G2+ 20 - 2qu2 + 5u?+ 203+ 0%, (3.4)
(Kisq =r+ri=ro=r’+r*+0(r'9.  (2.39  From this we calculate
One sees that the coefficient of the linear term in the smpall- (1-p)®
expansion correctly matches that of the series for the infinite (Ko 2. = 1-p+p* (3.9

square lattice and the power of the leading-order terrp in

— 1 expansion is 3, which, although not equal to the power ANote that this expression fdk) is the same as that for the
in the corresponding expansion abqut1, is at least closer L,=1 self-dual strip in Eq(2.34). This provides an illustra-
than the power of 2 for th&,=2 square-lattice strips with tion of the fact that two different families of lattice strips
free or periodic boundary condltlons The poles in E434) may have the same average cluster nungkerWe plot this
atp=(1/2)(1+43i) set the radii of convergence of the small- cluster numberk) in Fig. 5, together with the cluster num-
p and small+ expansions as unity in both cases, i.e., the fullpers for the various strips of the triangular lattice with greater

physical interval 6 p<1. widths and free or periodic boundary conditions. The values
of (k) for p=p.y; are listed in Table I. The Taylor series
2. 254, 3sds 4sd expansions of Eq(3.5 for p—0 andr=1-p—0 are the

For these strips, the free energy has the fqan,13  Same as those of E@.34.
f(sq.(Ly)sad,v)=(1/Ly)In )\Sq'(l-y)sd' Where)\sq(Ly)Sd are maxi-
mal roots of algebraic equations of degree 5 or higher.
Hence, it is thus not possible to obtain a closed-form analytic The free energyf for the strips of the triangular lattice
solution for this root. We thus follow the same high-precisionwith width L,=3,4,5 andfree transverse boundary condi-
numerical procedure as described ab¢see Fig. 4. tions were computed in Refl5] (see alsq16]). We have

2.3¢,4,5:
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P 3

FIG. 5. Plots of(k), as a function ofpe[0,1], for infinite- FIG. 6. Plots of(ky, as a function ofpe[0,1], for infinite-
length, finite-width strips of the triangular lattice. The dashed andength, finite-width strips of the honeycomb lattice. The dashed and
solid curves refer to free and periodic transverse boundary condisolid curves refer to free and periodic transverse boundary condi-
tions, respectively. For a givgm the dashed curves are, in order of tions, respectively. For a givem the dashed curves are, in order of
descending value ofk), for 2-<(L,)r<5¢, and the solid curves descending value ak), for 2 <(Ly)r <5, and the solid curve is
are, in the same order, fop2 (L,)p<4p. for 4p.

used these exact analytic expressions to obtain high- preci-

sion numerical computations ¢k) for these strips. (3.10

7
(Khig, =1 =3p+-p*+6p’+0(p°).

B. Periodic transverse boundary conditions
2 IV. STRIPS OF THE HONEYCOMB LATTICE
P
Having explained our calculational method above for the_ 1he free energy(hc, 2:,q,v) was calculated in Re{9].
square-lattice and previous triangular-lattice strips, we omif 'O it we obtain
the details for other lattice strips except where we have car- (1-p)%(4 + 3p+ 2p+ p° - 4p%)
ried out new calculations of Potts model free energies. The (Khe,z. = 7, 5 .
free energyf(tri, 2p,q,v) was calculated in Ref8]. From it Al-p'+p)

(4.2)

we compute

T p)*(2+2p - 7p*+ 4p> - p* + 2p° - p%)
tri,2P - 2(1 _ a)Z + 8p3 _ 12p4 + 8p5 _ 2p6)

(3.6

This has the respective Taylor series expansionspferO
andp—1:

1 9
(K2, =1~ 3+ p?+4p*+ p* = 100° - 100° + O(p'),

(3.7

1 9
<k>m,2P:§r4+ 2r6—2r8+§r1°+ orth. (3.9

The poles oftk) occur at

p=-0.3744, 1.6539,
1.1872 + 0.692¢4

0.1731+0.6306
(3.9

This has the respective Taylor series expansions

5 1 1 1
ez =L =5p+ PP+ 2p0= 2 pH+O(p), (4.2

3
(Knc,z. = 5r2+ 3r3+0(r%). (4.3

The expressiori4.1) has poles at

p=-0.8567, -0.15005%0.8975 1.0784 +0.496K
(4.4

The first of these is the nearest to the p@nt0, so that the
small- p Taylor series converges fdp|=0.8567. The last
pair of complex-conjugate poles is closesptol, so that the
series forr — 0 converges fotl—p| =< 0.5031.

Strips of the honeycomb lattice with other widths and
boundary conditions are analyzed using the same techniques
as discussed above. The resulting cluster numbersare
plotted in Fig. 6 and the values fp=p, c are listed in Table

The first two poles, lying on the reap axis, are closest to |-
the pointsp=0 andp=1 and determine the radii of conver-
gence of the series about these points to be approximately
0.3744 and 0.6539, respectively.

Our procedure for strips with greater widthg=3 is as
before for the square lattice afid, ) triangular-lattice strips.
The small-p series for the tri, 8 lattice is

V. STRIPS OF THE KAGOME LATTICE

A. 2¢

For the purpose of obtainingk), we have carried out a
calculation of the free energy of the Potts model on the 2
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B. 2

For the 2 strip of the kagomé lattice we find

N
(Kkag2, = —sz (5.7)
P

where

Niop = (1 —p)*(6 + 12p + 12p? + 4p° — 25p” — 1080° + 16p°
' +4720" - 7060° + 320p° + 286p'° - 352" — 1942
p + 36q)l3+ 12q)l4_ 34q)15+ 65p16+ 13@17_ 96p18

FIG. 7. Plots of(k), as a function ofpe[0,1], for infinite- +24p™° - 2p%9) (5.8
length, finite-width strips of the kagomé lattice. The dashed and
solid curves refer to free and periodic transverse boundary condigng
tions, respectively. For a givgm the dashed curves are, in order of

descending value gk), for 2 <(L,)r <3, and the solid curve is Diop = 6(1 — 2p4— 8p5+ 32p6+ 40p7— 26&38+ 424p9

for 2p.
- 32001+ 120p*t - 18p1?). (5.9
strip of the kagomé lattice. The results are sufficiently L N
lengthy that we list them in the Appendix. From these WeA plot is given in Fig. 7. The cluster numbék)kagv%: has
calculate poles at
Nior p=-0.4660, 1.6556, -0.3443+0.2919
<k>kag,q: i — (5.9 . .
Dir -0.0057 £0.475i, 0.5325+0.484 55
where 1.0776£0.4384 1.4785+0.2140 (5.10
Nior = (1 -p)A(5 + 2p—p? - 2p> - 8p* — 16p° + 43p° - 26p”  The first complex-conjugate pair is the nearest to the origin
— 208+ 100° — 3p0— 2pll+ pl 59 and sets the radius of convergence of the snyallFaylor
P O P P+ p™) 5.2 series expansion dk)yag 5, as 0.4514, while the second-to-
and last complex-conjugate pair is closest to the pgirtl and

. . 6 . o determines the radius of convergence of the series expansion
Dior =5(1 =p"=2p°+10p° - 10p" +3p%).  (5.3)  about this point to be 0.4453, to the stated accuracy.
To our knowledge, it is not known what the value(gf is

We plot(Kiag z. In Fig. 7. The value 0P, e has been de- for the (infinite) kagomé lattice at the numerically deter-

termined numerically23] as pcag=0.524 405 &); at this .4 critical percolation probabilitp, y,q Assuming that,

value ofp, our expressioiS.1) for (Kiag 3. has the approxi- ¢4, 5 given set of transverse boundary conditions and a given
mate value 0.229 18. TH&) for this 2- kagomé strip has the pe(0,1), (k) is a monotonically decreasing function of the

following expansions in the vicinity op=0 andp=1: strip width L, for this lattice, as we find for other lattice
8 2 1 strips, our results yield the upper boumki)kag<<k>kag,2P
(Kag,z = 1 —gPY gp3+ gpe +0(p), (5.4  =0.11149 at the valup=p, ,q given above. Here we use

the result for the g strip since it is lower than the result for
the 2 and 3 strips.

1 8 11 4
(k)kagsz:gr2+—r3+—r4—gr5+0(r6). (5.5

5 5 VI. DISCUSSION
The cluster numbe(5.1) has poles at We first introduce a notion of effective coordination num-
. . ber. For a graplG the degree of a vertex is the number of
p=-0.5470+0.2862 —0.0363+0.6583 bonds connected to this vertex.sAregular graph is a graph

0.7772+0.56056 1.4728+0.1486 (5.69  in which all of the vertices have the same degke®Vhether
a given lattice strip graph is-regular depends on the longi-
Of these, the first and last complex-conjugate pairs are clogudinal and transverse boundary conditions; for example, it is
est top=0 andp=1, respectively, and determine the radii of x-regular if one uses toroidgldoubly periodi¢ boundary
convergence of the Taylor series expansions about thesmnditions. In the limitL,— o, since the longitudinal bound-

points to be approximately 0.6174 and 0.4956. ary conditions do not affect the free enerffyG},q,v), we
We have also calculate) for the 3 strip of the kagomé need only consider the effect of the transverse boundary con-
lattice; this is plotted in Fig. 7. ditions. The effective coordination number is
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2e(G) For strips with periodic transverse boundary conditions,
nG) (6.1 the decrease ak) at a fixedp with increasing widthL, is
not associated with an increasesgy, Sincex.s IS constant

Clearly k= for a regular lattice. For regular lattice strips for these stripsand equal to the two-dimensional vajue
with periodic transverse boundary conditions, the value of€re one may interpret the decrease as being simply due to a
ke IS the same as the value for the corresponding tworeduction in the finite-width effects that enables the percola-
dimensional lattice. For strips with free transverse boundaryion quantities to approach their two-dimensional values.
conditions, we have (4) For a given lattice type, we find some examples where

the curve for(k) calculated on a strip of width, with peri-

odic transverse boundary conditions will cross the curve for
) (6.2 (k) for the same lattice and a differeb} and free transverse

boundary conditions. For example, as is evident in Fig. 1, the

Ker({G}) = lim

n—oe

ket A (L)) = KA<1 —Lﬁ
Yy

wherex,=4,6,3 forA=sq,tri,hc and curve for(k) on the sq,2 strip lies below those fotk) on
the sq(L,)r strips at smallp, but sequentially crosses the

1 _2 _1 latter asp increases and lies above thef@xcept forl,
dsq= 5 Mg GheT 5 (6.3 =1,2) asp— 1. Similar behavior is observed, e.g., on the

strips of the triangular lattice. These also constitute examples
For the cyclic self-dual strips of the square lattice, the singleof how (k) calculated on a strip with a larger value of;
external vertex connected to each of the sites on one side @han that of another strip can be larger tnfor the latter
the strip has a degrds, that diverges at,—. TheLy(Ly  strip. For instancex.s=«=4 for the sq, 3 strip, which is
—1) interior vertices have degree 4, while thevertices on  |arger than the valug.s=3.6 for the sq,5 strip; however,
the rim have degree 3. Together, these lead, in the limit (k) on the former strip is larger thagk) on the latter forp
— o, to the resultks, 4. Finally, for the kagomé strips =0.36. This dependence on transverse boundary conditions
with free transverse boundary conditions is consistent with disappearing as the strip widfi— =,
consistent with the approach to a single limiting functi&n
Kefr(kag,(Ly)F)=4<1‘3L—1>y (6.4) for the porresponding 2D Iatti_ce. Altho_ugh we hav.e not
v~ proved rigorously that the functiofk) obtained via this lim-
_ o ) o iting sequencétaking L, — o first and then takind, — =) is
while for the kagomé strips with periodic transverse boundigentical to the functior(k) obtained via the usual two-
ary conditions =4, the same value as for the infinite two- . <nsional thermodynamic limi Ly—c, L,—o with

dimensional kagomé lattice. L,/L, a nonzero finite numbgrthis conclusion is consistent

turg;om our calculations we find a number of generic fea'with our findings.

. . . (5) We have used the values ¢ atp=p. , as a measure
.(1) We. have shown thak is a(re.a'b analytic fupctmn of of how rapidly, for a giverp, the cluster number calculated
p in the interval G= p<<1. At the critical percolation prob-

ility b=1 for th . . | on infinite-length, finite-width strips approaches the value for
ability p=1 for these quasi-1D strips, our exact results(for yhe yyo-dimensional lattice. These values are listed in Table

are also analytic, although some other quantities in percola- gyen for the modest strip widths considered here, one sees

ti_on, such as the pe.rcola.tion probabilyp) and the cluster that(i) these values approach the known valueépbn the

sizeS(p) are not, as is evident from the well-known 1D case.cqrresponding two-dimensional lattices reasonably quickly,
(2) As the curves in the figures show, with an increase inanq i) this approach is more rapid when one uses periodic

strip width Ly, (k) is consistent with approaching a limiting transverse boundary conditions, as is expected, since the lat-

function of p. This is in accord with one’s expectation. ter minimize finite-width effects. For example, for the strip
(3) For a givenp in the interval between 0 and 1, and for of the square lattice with.,=5 and periodic transverse

a given type of lattice strip, as the width increases(k)  boundary conditions(k) evaluated ap=pg, is about 15%

decreases, so that the approach to the asymptotic value fRfrger than(k). for the square lattic§24], while (k) for the

the 2D lattice is from above, in the cases that we have comy; 4, and hc, 4 strips, evaluated at the respectivg,; and

puted. For strips with free transverse boundary conditionspC’hC’ are both about 17% larger than the corresponding val-

increasingL increasescer, S0 the decrease ¢k) is associ- - es[24] (k), for the triangular and honeycomb lattices.
ated with an increase in the effective coordination number. (g) we find that for these strips, the smalkeries expan-

This is reasonable, since, heuristically, for a fixed valup,of = sjons of(k) have the leading terms

there is a greater probability of having a percolating cluster

on a lattice of higher coordination number, so that more sites

are part of this cluster and there are fewer separate clusters k=1 _<ﬁf>p+ . (6.5)

per site. This is also reflected in the monotonic decrease of 2

pc 4 With increasingk, for most higher-dimensional lattices.

(However, we recall that counterexamples to this generalvhich are analogous to the structure that these series have for
monotonic decrease k) with increasing coordination num- regular lattices of dimensioth=2. Higher-order terms in the

ber are knowr{26].) series for the strips of small widths are not expected to co-
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incide with those in the series for the two-dimensional lat-problem on infinite-length, finite-width strips of the square,
tices, and one sees that they do not. triangular, honeycomb, and kagomé lattices, with both free
(7) An interesting output of our analysis is the exact de-and periodic transverse boundary conditions. We believe that
termination, for various infinite-length, finite-width strips, of these results are a useful extension beyond the one-
the singularities ofk) in the complex-p plane. As we have dimensional result toward two dimensions and provide in-

shown, for many strips thegeeal and/or complepsingulari-  sight into the form of(k) as a function of the bond occupa-
ties outside the physical intervdD, 1] occur sufficiently  tion probability p.

close to the pointp=0 andp=1 that they render the radii of
convergence of the respective Taylor series expansions about
these points less than unity, although the actual functikns

themselves are analytic functions pr [0, 1]. Although the We thank R. Ziff for helpful comments. The research of
strip widths are probably too small to justify a detailed com-R.S. was partially supported by the grant NSF-PHY-00-
parison with unphysical singularities for percolation quanti-98527.
ties in two dimensions, this generic property—the presence

of unphysical singularities that determine the radii of the
Taylor series expansions about the pojms0 andp=1 to be

less thamp, for the given type of lattice—is similar to what In this appendix we give the free energy for the Potts
was found in analyses of series for the percolation problenmodel on the R strip of the kagomé lattice. We find

on two- and three-dimensional latticgl.

(8) Finally, we have discussed how, for a given infinite-
length, finite-width strip, the unphysical singularities have a
connection with the locus,,, which is the continuous accu- h
mulation set of the zeros of the Potts model partition func-Vnere
tion in the p (or equivalently thev) plane obtained by first 1 N
letting n— o and theng— 1. In particular, we find that these NoF = E[TKZF + VRior] (A2)
unphysical singularities lie o8;,. The noncommutativity of
Eqg.(2.11) analyzed in Ref{6] plays a crucial role here, since with
B, obtained by first letting]— 1 and them — , is trivial. _ 3 7 6 5 4 3.3
Our results motivate further study on this topic. Tior =v"+ 80" +v7q + 297 + 200°q + 10v7q" + 2v7q

+420°% + 61n%q + 540°%q% + 28%0° + 8vg* + °

(A3)
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APPENDIX

1
f(kag,Z.0.0) = ZIn i (A1)

VII. CONCLUSIONS

In summary, we have presented exact calculations of the
average cluster number per s{te for the bond percolation and

R = 018+ 1601°+ 201 + 114+ 32013 - 30202 - 4v™q® + 48413+ 288 1% + 5201 10? - 281 %° - 120°%* — 208¢°
+1329%2+ 1572 Mg + 10982%2 + 520:%q% + 192080* + 48 7 + 6v°q° + 219611 + 4350)1% + 5196:%¢° + 4344)%¢°
+26287q" + 1114°5° + 3120°%¢° + 520%q” + 403 + 16201+ 4572,%q + 7413.%q? + 8284 'q® + 6732°5¢*

+40285¢° + 1766%° + 556°%q" + 1202® + 16vq° + q*°. (A4)
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