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We present exact calculations of the average number of connected clusters per site,kkl, as a function of bond
occupation probabilityp, for the bond percolation problem on infinite-length strips of finite widthLy, of the
square, triangular, honeycomb, and kagomé latticesL with various boundary conditions. These are used to
study the approach ofkkl, for a givenp andL, to its value on the two-dimensional lattice as the strip width
increases. We investigate the singularities ofkkl in the complexp plane and their influence on the radii of
convergence of the Taylor series expansions ofkkl aboutp=0 andp=1.
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I. INTRODUCTION

The study of percolation gives insight into a number of
important phenomena such as the passage of fluids through
porous media and the effect of lattice defects and disorder on
critical phenomena. Here we consider bond percolation. Let
G=GsV,Ed be a connected graph defined by a setV of ver-
tices(sites) and a setE of edges(bonds) connecting pairs of
vertices. We denote the number of vertices and bonds asn
=nsGd= uVu andesGd= uEu. In the usual statistical mechanics
context, one is interested in ad-dimensional thermodynamic
limit of a regular lattice graphL in which the bonds are
present with probabilityp. Consider the probabilityPsL ,pd
that a given site belongs to an infinite cluster. For a given
lattice L, as p decreases from 1,PsL ,pd decreases mono-
tonically until, at a critical value,pc,L, it vanishes and re-
mains identically zero for 0øpøpc,L. An interesting quan-
tity in this context is the number of connected components
(clusters), including single sites, for a given latticeL, di-
vided by the number of sites on the lattice and averaged over
all of the graphs in the above ensemble. We denote this mean
cluster number per site askklL. Reviews on percolation in-
clude [1–3].

In this paper we present exact calculations of this average
cluster number per site,kkl, as a function ofp, for a variety
of infinite-length, finite-width strips of regular lattices[4].
We consider strips of the square, triangular, honeycomb, and
kagomé lattices. These are of interest since, at least for mod-
est strip widths, one can obtain explicit analytic expressions
for kkl and can exactly determine, e.g., singularities that
these expressions have in the complexp plane and their in-
fluence on series expansions. Our results interpolate between
the known exact solutions for the one-dimensional lattice
(line) and the case of two dimensions(for which kkl is not
known exactly as a function ofp), and complement numeri-
cal simulations and series expansions.

We take the longitudinal and transverse directions to bex
andy and denote the size of the lattice strips in these direc-
tions asLx andLy and the respective boundary conditions as
BCx and BCy. We focus on the limit of infinite length,Lx
→`, for which the results are independent of the longitudi-
nal boundary conditions. For an infinite-length strip of a lat-
tice L, as the widthLy→`, one expectskkl to approach a
limiting function of p which is independent of the transverse
boundary conditions and is equal tokkl for the corresponding
infinite two-dimensional latticeL. In particular, for a given
infinite-length, finite-width strip of the latticeL, it is of in-
terest to evaluate our exact expressions forkkl at p=pc,L and
study how the resultant value approaches the critical value
kklc,L for the corresponding infinite two-dimensional lattice.

For a given graphG=sV,Ed we calculatekkl by making
use of the equations

kkln = U ] fsG,q,vpd
] q

U
q=1

, s1.1d

where

v = vp ;
p

1 − p
, s1.2d

fsG,q,vd is the reduced free energy of theq-state Potts
model on the graphG [5], and in the limitn→`

kkl = U ] fshGj,q,vpd
] q

U
q=1

, s1.3d

where hGj denotes the formal limit limn→`G for a given
family of graphs. Our method for calculatingkkl is to use Eq.
(1.3) in conjunction with exact results that we have com-
puted for the free energy of the Potts model on infinite-
length, finite-width strips of various lattices[6–16].

As background for our exact results, we note some basic
properties of kkl: (i) limp→0kkln=limp→0kkl=1; (ii )
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limp→1kkln=1/n and hence limp→1kkl=0; (iii ) for a given
hGj, kkl is a monotonically decreasing function ofp for p
P f0,1g. For the infinite-length, finite-width strips considered
here,kkl is a (real) analytic function ofp for pP f0,1g; how-
ever, this quantity may have singularities at unphysical val-
ues ofp, including real values outside the interval 0øpø1
and complex values, as will be discussed further below.

The property thatkkl (calculated in the limit asLx→`) is
independent of the longitudinal boundary conditions im-
posed on the lattice strip follows from the same property for
the Potts model free energy. We further expect that, for a
given transverse boundary condition and for a givenp
P f0,1g, the value ofkkl for an infinite-length strip of the
lattice L approaches the corresponding value ofkkl for the
(infinite) two-dimensional latticeL asLy→`.

Our exact results give insight into a feature of Taylor
series expansions in percolation, calculated aroundp=0 and
p=1, namely, the fact that the radii of convergence of these
series expansions around these respective points are typically
set by unphysical singularities and are less than the distance
from the expansion point to the physical singularity,pc,L.
Our results exhibit the same feature: althoughkkl itself is an
analytic function ofp for pP f0,1g, Taylor series expansions
aboutp=0 andp=1 typically have radii of convergence less
than unity, set by unphysical singularities ofkkl.

II. STRIPS OF THE SQUARE LATTICE

A. Ly=1

The well-known result

kkl1D = 1 − p s2.1d

for the infinite line can be derived directly using probability
methods. Here we illustrate how it can be derived via Eq.
(1.3). An elementary calculation yields the Potts free energy
fs1D ,q,vd=lnsq+vd. Using Eq.(1.3) yields the above result
for kkl1D. This has the value 1/2 atp=pc,sq [17] (see Table I).

B. Free transverse boundary conditions

For Lyù2, we label an infinite-length strip of widthLy of
the latticeL with given transverse boundary conditions BCy
as L ,sLydBCy

. In particular, theLy=2 square-lattice strips
with free sFd and periodicsPd transverse boundary condi-
tions are denoted sq,2F and sq,2P.

1. 2F

The free energy of the Potts model for the sq,2F strip is
[6]

fssq,2F,q,vd =
1

2
ln lsq,2F,1 s2.2d

where

lsq,2F,j =
1

2
sTs2F ± ÎRs2Fd s2.3d

with j =1,2 corresponding to ± and

Ts2F = v3 + 4v2 + 3qv + q2, s2.4d

Rs2F = v6 + 4v5 − 2qv4 − 2q2v3 + 12v4 + 16qv3 + 13q2v2

+ 6q3v + q4. s2.5d

In Eq. (2.3) only the j =1 term is relevant for the free energy,
while the j =2 term will be discussed below.

From Eq.(2.2) we calculate the average cluster number
per site

TABLE I. Values ofkkl on infinite-length strips of the latticesL
(where sq, tri ,hc,kag denote square, triangular, honeycomb, and
kagomé) of finite width Ly at p=pc,L. The transverse boundary con-
ditions sBCyd are F and P for free and periodic, respectively. We
also include results for the self-dualssdd strips of the square lattice.
The effective coordination numberkeff is defined in Eq.(6.1). The
Ly=` values of kklp=pc,L

are the values for the two-dimensional
latticesL [24,25] where these are known exactly, and the dashes for
these entries indicate that they do not depend on BCy.

L BCy Ly keff kklp=pc,L

sq F 1 2 0.50000

sq F 2 3 0.28571

sq F 3 3.33 0.21940

sq F 4 3.50 0.18753

sq F 5 3.60 0.16887

sq P 2 4 0.20000

sq P 3 4 0.14103

sq P 4 4 0.12150

sq P 5 4 0.11284

sq sd 1 4 0.16667

sq sd 2 4 0.14407

sq sd 3 4 0.132545

sq sd 4 4 0.12561

sq – ` 4 0.09808

tri F 2 4 0.35958

tri F 3 4.67 0.27149

tri F 4 5 0.22946

tri F 5 5.20 0.20491

tri P 2 6 0.19091

tri P 3 6 0.14665

tri P 4 6 0.13138

tri – ` 6 0.11184

hc F 2 2.50 0.20475

hc F 3 2.67 0.16000

hc F 4 2.75 0.13834

hc F 5 2.80 0.12560

hc P 4 3 0.08983

hc – ` 3 0.07687

kag F 2 3.2 0.22918

kag F 3 3.5 0.17220

kag P 2 4 0.11149
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kklsq,2F
=

s1 − pd2s2 + p − 2p2d
2s1 − p2 + p3d

. s2.6d

This is plotted in Fig. 1 together with cluster numbers calcu-
lated for other strips. Atp=pc,sq=1/2, this average cluster
number has the valuekklsq,2F

=2/7.0.285 71.
From the exact expression forkklsq,2F

we compute the
respective Taylor series expansions

kklsq,2F
= 1 −

3

2
p +

1

2
p4 +

1

2
p6 + Osp7d for p → 0

s2.7d

and, in terms of the variabler =1−p,

kklsq,2F
=

1

2
r2 + 2r3 −

7

2
r5 + Osr6d for r → 0. s2.8d

Thus for this stripkkl is linear for smallp and vanishes
quadratically asp→1. As expected for such a small width,
these series differ from the series for the(infinite) square
lattice, although the linear behavior for smallp is common to
both.

The expression forkkl for this strip has singularities,
which are simple poles, where the denominator 1−p2+p3

=0, at

p . − 0.7549, 0.8774 ± 0.7449i . s2.9d

The first of these poles is the closest to the origin and deter-
mines the radius of convergence of the small-p Taylor series
in Eq. (2.7) to be approximately 0.7549. The complex pair
are the same distance from the pointp=1 and imply that this
series converges foru1−pu&0.7549. Thus, althoughkklsq,2F
is an analytic function ofp for pP f0,1g, the Taylor series
expansions aboutp=0 andp=1 have radii of convergence
less than unity because of singularities of this function at real
and complex values outside the physical interval 0øpø1. It
is interesting that althoughlsq,2F

is an algebraic function ofv
[and hencep, via Eq. (1.2)], the resultant expression for

kklsq,2F
is a rational function ofp. However, this is a conse-

quence of the small value ofLy. The same comment applies
to the property thatkklsq,2F

is meromorphic, i.e., its only
singularities are simple poles. As will be seen, these features
are also true of the cluster numberkkl for otherLy=2 strips
considered here.

In this very simple context of a quasi-one-dimensional
(quasi-1D) strip, one hence gains some insight into the simi-
lar influence of unphysical singularities in series expansions
about p=0 andp=1 for percolation on higher-dimensional
lattices. To understand these poles more deeply, we observe
that although the free energyfssq,2F ,q,vd depends only on
lsq,2F,1, the partition function for free longitudinal boundary
conditions[18] and qÞ1 in general is a symmetric sum of
Lxth powers of both of thelsq,2F,j’s for j =1 and j =2 [given
as Eq.(5.17) of Ref. [6]]. We are interested in the limitq
→1. It is necessary to take account of a subtlety concerning
the dependence of the complex-v phase boundaryB of the
Potts model, as a function ofq. In previous work[see Eqs.
(2.8)–(2.12) of Ref. [6] and Eq. (1.9) of Ref. [19]] we
pointed out the noncommutativity at certain special values of
qs, includingqs=0,1, namely

lim
n→`

lim
q→qs

ZsG,q,vd1/n Þ lim
q→qs

lim
n→`

ZsG,q,vd1/n s2.10d

and we noted that, because of this noncommutativity, for the
special set of pointsq=qs one must distinguish between(i)
(BshGj ,qsd)nq, the continuous accumulation set of the zeros
of ZsG,q,vd obtained by first settingq=qs and then taking
n→`, and (ii ) (BshGj ,qsd)qn, the continuous accumulation
set of the zeros ofZsG,q,vd obtained by first takingn→`,
and then takingq→qs. For these special points,

„BshGj,qsd…nq Þ „BshGj,qsd…qn. s2.11d

A previous case of this was theq=2 (Ising) special case of
the Potts model. Indeed, in that case it was noted thatBqn
does not have the inversion symmetryeK→e−K that charac-
terizes the Ising model and its complex-temperature phase
boundaryBnq for a bipartite lattice(see pp. 396, 433–435 of
Ref. [6]). This noncommutativity is also present at the value
q=1 relevant for percolation. If one uses the definitionBnq
with q=1 for percolation, as one uses the definitionBnq with
q=2 for the Ising model, then whileBnq is nontrivial for the
Ising model,Bnq is trivial for the percolation problem. The
reason for this is that if one setsq=1 first, then, from the
Hamiltonian definition of the Potts model, since the spins are
the same on all sites, the spin-spin interactions on each bond
contribute a factoreK to the partition function, so one has the
elementary result

ZsG,1,vd = eK esGd = sv + 1desGd. s2.12d

Substitutingv=vp as in Eq.(1.2) gives

ZsG,1,vpd = s1 − pd−esGd. s2.13d

Evidently, ZsG,1 ,vpd has no zeros, so thatBnq=ø in the
complexp plane. Equivalently,ZsG,1 ,vd has only a single
zero at the pointv=−1, which maps, via Eq.(1.2), to the
circle at infinity in the complexp plane. We have noted

FIG. 1. Plots ofkkl (vertical axis) as a function ofpP f0,1g
(horizontal axis) for infinite-length, finite-width strips of the square
lattice. The dashed and solid curves refer to free and periodic trans-
verse boundary conditions, respectively. For a givenp, the dashed
curves are, in order of descending value ofkkl, for 1Fø sLydFø5F,
and the solid curves are, in the same order, for 2Pø sLydPø5P.
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above that, in general, forqÞ1, the partition function of the
Potts model consists of a symmetric sum ofLxth powers of
lsq,2F,1 and lsq,2F,2; if one sets q=1, the coefficient of
slsq,2F,2dLx vanishes, and theslsq,2F,1dLx term, with its coeffi-
cient, reduces to the form(2.13) (where in the labeling con-
vention of Ref.[6], Lx+1 denotes the number of squares on
the sq,2F strip).

However, the fact that Eq.(1.3) involves a derivative
means that it is sensitive to properties of the Potts model in
the neighborhood of the pointp=1 as well as at this point.
This suggests that one consider the possible role of the locus
Bqn, although one must use caution in doing this because of
the noncommutativity discussed above. Below we shall use
the notationBqn to mean specifically the boundary defined
for n→` andq→1, relevant to the percolation problem.

We find some intriguing connections between the locus
Bqn and complex-p singularities inkkl. Let us first calculate
Bqn for the sq,2F strip in the limit q→1. Evaluating Eq.
(2.3) for q→1, we obtain

lsq,2F,1 =
1

s1 − pd3 s2.14d

and

lsq,2F,2 =
p2

s1 − pd2 . s2.15d

The locusBqn is the set of solutions of the equation of de-
generacy in magnitude of dominantl’s. This locus can be
seen as a special case of the more general phase boundary for
the Potts model in thev plane for a fixedq, or in theq plane
for a fixedv. For the present case, since there are only two
lsq,2F,j’s, for j =1,2, this equation isulsq,2F,1u= ulsq,2F,2u, i.e.,

up2s1 − pdu = 1. s2.16d

In terms of the polar coordinatesp=reiu this equation reads
r4s1+r2−2r cosud=1. The solution is a closed egg-shaped
curve, shown in Fig. 2, that crosses the real-p axis at p.
−0.7549 and p.1.466 and the imaginary-p axis at p
. ±0.8688i. This thus constitutes the phase boundary in the
complex-p plane, separating this plane into two regions. As
follows from the general discussion above, the physical in-

terval 0øpø1 lies entirely in one phase. The three poles of
kklsq,2F

listed in Eq.(2.9) lie on this boundaryBqn.

2. 3F ,4F ,5F

The Potts model free energyf for the infinite-length sq,3F
strip was calculated in Ref.[7]. The free energy is given by
fssq,3F ,q,vd=s1/3dln lsq,3F

, wherelsq,3F
is the (maximal)

root of an algebraic equation of degree 4. Because of the
complicated nature of the expression for this quartic root, we
do not present it here. We have calculatedfssq,3F ,q,vd, and
hencekklsq,3F

, to high precision by numerically solving for
fssq,3F ,q,vd for a range of values ofq near unity, for each
value of p, and carrying out the differentiation in Eq.(1.3).
Although this is numerical, the computational steps can be
carried out with almost arbitrarily high precision, so that, in
practice, it is essentially equivalent to evaluating an explicit
exact analytic expression. We also apply this procedure for
larger strip widths, using the exact calculation off for sq,4F
and sq,5F in Ref. [14] (see also[16]). The resulting values of
kkl are plotted as functions ofp in Fig. 1, and the values of
kkl at p=pc,sq=1/2 arelisted in Table I. One could carry out
similar calculations ofkkl for larger values ofLy, but our
results are sufficient to show the nature of the approach of
kkl on these infinite-length, finite-width strips to the average
cluster number for the corresponding infinite two-
dimensional lattice. Indeed, one of the most interesting
pieces of information that we get from our results, the exact
determination of singularities ofkkl in the complex-p plane
and their effect on the radii of convergence of series expan-
sions, can be obtained only for strip widths that are small
enough so that we can get exact explicit analytical forms for
kkl.

C. Periodic transverse boundary conditions

1. 2P

By using periodic transverse boundary conditions, one
minimizes finite-width effects in this transverse direction. We
consider first the sq,2P strip. Note that this strip has double
transverse bonds. The free energy was computed in Ref.[7]
and is given by

fssq,2P,q,vd =
1

2
ln lsq,2P,1 s2.17d

where

lsq,2P,j =
1

2
sTs2P ± ÎRs2Pd s2.18d

with j =1,2 corresponding to ± and

Ts2P = 6v2 + 4qv + q2 + 4v3 + qv2 + v4 s2.19d

and

Rs2P = sv4 + 6v3 + 8v2 + 3qv2 + 6qv + q2d

3sv4 + 2v3 + 4v2 − qv2 + 2qv + q2d. s2.20d

From this, using Eq.(1.3), we calculate

FIG. 2. Plot of the boundaryBqn in the complex-p plane for the
infinite-length sq,2F lattice strip. Horizontal and vertical axes are
Respd and Imspd.
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kklsq,2P
=

s1 − pd2s2 – 3p2 + 2p3d
2s1 + p − p2ds1 − p + p2d

. s2.21d

At the value ofpc,sq=1/2 for theinfinite square lattice this
has the valuekklsq,2P

=1/5.
The expression(2.21) has poles where 1+p−p2 vanishes,

at

p1,2=
1

2
s1 ± Î5d . 1.618, − 0.6180, s2.22d

and where 1−p+p2 vanishes, at

p3,4=
1

2
s1 ± Î3id . 0.5 ± 0.866i . s2.23d

The second and first of these poles are closest to the points
p=0 andp=1 and determine the radii of convergence of the
respective Taylor series expansions about these points both
to be 0.618. These expansions are

kklsq,2P
= 1 − 2p +

1

2
p2 + 2p4 + Osp5d s2.24d

and

kklsq,2P
=

1

2
r2 + 2r4 − 2r5 + Osr6d. s2.25d

Note that, in accord with the fact that the coordination num-
ber of this and any infinite-length lattice strip of the square
lattice with periodic transverse boundary conditions is 4, the
coefficient of the linear term in the small-p expansion is
equal to that of the expansion for the full square lattice.

We next discuss the connection of the poles inkklsq,2P
with the locusBqn. Although fssq,2P,q,vd depends only on
the quantitylsq,2P,1, the Potts model partition function for
qÞ1 involves a symmetric sum ofLxth powers of both
lsq,2P,1 and lsq,2P,2 [14]. Evaluatinglsq,2P,j for q→1, we
have

lsq,2P,1 =
1

s1 − pd4 , s2.26d

lsq,2P,2 =
p2

s1 − pd2 . s2.27d

The locus Bqn is the set of solutions of the equation
ulsq,2P,1u= ulsq,2P,2u, i.e.,

ups1 − pdu = 1. s2.28d

In terms of the polar coordinates defined above, this equation
readsr2s1+r2−2r cosud=1. The solution forms a closed
oval curve in the complex-p plane, shown in Fig. 3, that
crosses the real axis at the pointsp1,2 in Eq. (2.22) and the
imaginary axis at the pointsp. ±0.786 15i. As in the case of
the sq,2F strip, this curve separates thep plane into two
regions. All of the four poles ofkklsq,2P

given in Eqs.(2.22)
and(2.23) lie on this curveBqn. This property—that the sin-
gularities ofkkl lie on Bqn—is analogous to the property that
the singularities of thermodynamic functions of spin models

lie on the complex-temperature phase boundaries for these
models, as we have studied in earlier work[20–22]. Having
pointed out the connection between these singularities and
the locusBqn, we shall, for the strips considered below, just
summarize the singularities ofkkl.

2. 3P,4P,5P

For the sq,3P strip, fssq,3P,q,vd=s1/3dln lsq,3P
, where

lsq,3P
is the (maximal) root of a cubic equation. Although it

is possible to display an analytic result forkklsq,3P
, it is suf-

ficiently cumbersome that we do not give it here. It is an
algebraic, rather than rational, function ofp. We do display
the small-p expansion, which is

kklsq,3P = 1 − 2p +
1

3
p3 + p4 + Osp5d. s2.29d

The free energyf was calculated for the sq,4P and sq,5P
strips in Ref.[14], andlsq,4P

andl5P
are roots of equations

of too high a degree to allow an explicit analytic solution.
Accordingly, we computekkl by the numerical procedure
discussed above. Results are given in Fig. 1 and Table I.

D. Self-dual strips of the square lattice

It is of interest to calculatekkl for strips of the square
lattice that maintain a property of the infinite square lattice,
namely, self-duality. The strips with free and periodic trans-
verse boundary conditions considered above are not self-
dual. However, one can construct a cyclic strip that is self-
dual by adding a single external site to a cyclic square-lattice
strip of widthLy and then adding bonds connecting all of the
sites on one side of the strip to this single external site. We
denote a self-dualssdd strip of this type as sq,sLydsd. Before
presenting our calculations, a remark is in order concerning
pc for these strips. The physical meaning ofpc for a usual
infinite lattice is, as mentioned before, that forpùpc there
exists a percolation cluster linking two points that are an
arbitrarily large distance apart. Now consider the simplest of
the cyclic self-dual lattice graphs, withLy=1; this is a wheel
graph, having a rim forming a circuit and a central site( ,
axle) connected to the sites on the rim byLx bonds forming
spokes. Evidently, even in the limitLx→`, the maximum

FIG. 3. Plot of the boundaryBqn in the complex-p plane for the
infinite-length sq,2P lattice strip. Horizontal and vertical axes are
Respd and Imspd.
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distance between any two sites on this lattice graph is two
bonds; to get from any site on the rim to any other site, one
takes a minimum-distance route that goes inward along one
spoke to the central site and out again on another spoke to
the other site. Similarly, for any finiteLy, even asLx→`
there is a maximal finite distance 2Ly bonds between any two
sites. Therefore, although this family of cyclic lattice strips
does maintain the property of self-duality of the infinite
square lattice, the notion of a criticalpc beyond which there
is a percolation cluster linking two sites arbitrarily apart is
not applicable to it since no sites are arbitrarily far apart.

1. 1sd

The free energy is[10,13]

fssq,1sd,q,vd = ln lsd1 s2.30d

where

lsd1=
1

2
sTsd1+ ÎRsd1d s2.31d

with

Tsd1= 3v + q + v2, s2.32d

Rsd1= 5v2 + 2vq + 2v3 + q2 − 2v2q + v4. s2.33d

From this we calculate

kklsq,1sd
=

s1 − pd3

1 − p + p2 . s2.34d

We havekklsq,1sd
=1/6 atp=pc,sq. The mean cluster num-

ber kkl in Eq. (2.34) has the following Taylor series expan-
sions forp→0 andp→1:

kklsq,1sd
= 1 – 2p + p3 + p4 − p6 − p7 + p9 + Osp10d,

s2.35d

kklsq,1sd
= r3 + r4 − r6 − r7 + r9 + Osr10d. s2.36d

One sees that the coefficient of the linear term in the small-p
expansion correctly matches that of the series for the infinite
square lattice and the power of the leading-order term inp
→1 expansion is 3, which, although not equal to the power 4
in the corresponding expansion aboutp=1, is at least closer
than the power of 2 for theLy=2 square-lattice strips with
free or periodic boundary conditions. The poles in Eq.(2.34)
at p=s1/2ds1±Î3id set the radii of convergence of the small-
p and small-r expansions as unity in both cases, i.e., the full
physical interval 0øpø1.

2. 2sd,3sd,4sd

For these strips, the free energy has the form[10,13]
f(sq,sLydsd,q,v)=s1/Lydln lsq,sLydsd

, wherelsq,sLydsd
are maxi-

mal roots of algebraic equations of degree 5 or higher.
Hence, it is thus not possible to obtain a closed-form analytic
solution for this root. We thus follow the same high-precision
numerical procedure as described above(see Fig. 4).

III. STRIPS OF THE TRIANGULAR LATTICE

A. Free transverse boundary conditions

1. 2F

The free energy for the Potts model on this strip is[8]

fstri,2F,q,vd =
1

2
ln lt2F s3.1d

where

lt2F =
1

2
fTt2F + s3v + v2 + qdÎRt2Fg s3.2d

with

Tt2F = v4 + 4v3 + 7v2 + 4qv + q2 s3.3d

and

Rt2F = q2 + 2qv − 2qv2 + 5v2 + 2v3 + v4. s3.4d

From this we calculate

kkltri,2F
=

s1 − pd3

1 − p + p2 . s3.5d

Note that this expression forkkl is the same as that for the
Ly=1 self-dual strip in Eq.(2.34). This provides an illustra-
tion of the fact that two different families of lattice strips
may have the same average cluster numberkkl. We plot this
cluster numberkkl in Fig. 5, together with the cluster num-
bers for the various strips of the triangular lattice with greater
widths and free or periodic boundary conditions. The values
of kkl for p=pc,tri are listed in Table I. The Taylor series
expansions of Eq.(3.5) for p→0 and r =1−p→0 are the
same as those of Eq.(2.34).

2. 3F ,4F ,5F

The free energyf for the strips of the triangular lattice
with width Ly=3,4,5 andfree transverse boundary condi-
tions were computed in Ref.[15] (see also[16]). We have

FIG. 4. Plots ofkkl, as a function ofpP f0,1g, for infinite-
length, finite-width self-dual strips of the square lattice. For a given
p, in order of descending value ofkkl, the curves refer to are for
1sdø sLydsdø4sd.
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used these exact analytic expressions to obtain high- preci-
sion numerical computations ofkkl for these strips.

B. Periodic transverse boundary conditions

2P

Having explained our calculational method above for the
square-lattice and previous triangular-lattice strips, we omit
the details for other lattice strips except where we have car-
ried out new calculations of Potts model free energies. The
free energyfstri ,2P,q,vd was calculated in Ref.[8]. From it
we compute

kkltri,2P
=

s1 − pd4s2 + 2p − 7p2 + 4p3 − p4 + 2p5 − p6d
2s1 – 2p2 + 8p3 − 12p4 + 8p5 − 2p6d

.

s3.6d

This has the respective Taylor series expansions forp→0
andp→1:

kkltri,2P
= 1 − 3p +

1

2
p2 + 4p3 +

9

2
p4 − 10p5 − 10p6 + Osp7d,

s3.7d

kkltri,2P
=

1

2
r4 + 2r6 − 2r8 +

9

2
r10 + Osr11d. s3.8d

The poles ofkkl occur at

p . − 0.3744, 1.6539, 0.1731 ± 0.6306i,

1.1872 ± 0.6924i . s3.9d

The first two poles, lying on the real-p axis, are closest to
the pointsp=0 andp=1 and determine the radii of conver-
gence of the series about these points to be approximately
0.3744 and 0.6539, respectively.

Our procedure for strips with greater widthsLyù3 is as
before for the square lattice andsLydF triangular-lattice strips.
The small-p series for the tri ,3P lattice is

kkltri,3P
= 1 − 3p +

7

3
p3 + 6p4 + Osp5d. s3.10d

IV. STRIPS OF THE HONEYCOMB LATTICE

The free energyfshc,2F ,q,vd was calculated in Ref.[9].
From it we obtain

kklhc,2F
=

s1 − pd2s4 + 3p + 2p2 + p3 − 4p4d
4s1 − p4 + p5d

. s4.1d

This has the respective Taylor series expansions

kklhc,2F
= 1 −

5

4
p +

1

4
p6 +

1

4
p10 −

1

4
p11 + Osp14d, s4.2d

kklhc,2F
=

3

2
r2 + 3r3 + Osr4d. s4.3d

The expression(4.1) has poles at

p . − 0.8567, − 0.150 05 ± 0.8975i, 1.0784 ± 0.4969i .

s4.4d

The first of these is the nearest to the pointp=0, so that the
small- p Taylor series converges forupu&0.8567. The last
pair of complex-conjugate poles is closest top=1, so that the
series forr →0 converges foru1−pu&0.5031.

Strips of the honeycomb lattice with other widths and
boundary conditions are analyzed using the same techniques
as discussed above. The resulting cluster numberskkl are
plotted in Fig. 6 and the values forp=pc,hc are listed in Table
I.

V. STRIPS OF THE KAGOMÉ LATTICE

A. 2F

For the purpose of obtainingkkl, we have carried out a
calculation of the free energy of the Potts model on the 2F

FIG. 5. Plots ofkkl, as a function ofpP f0,1g, for infinite-
length, finite-width strips of the triangular lattice. The dashed and
solid curves refer to free and periodic transverse boundary condi-
tions, respectively. For a givenp, the dashed curves are, in order of
descending value ofkkl, for 2Fø sLydFø5F, and the solid curves
are, in the same order, for 2Pø sLydPø4P.

FIG. 6. Plots ofkkl, as a function ofpP f0,1g, for infinite-
length, finite-width strips of the honeycomb lattice. The dashed and
solid curves refer to free and periodic transverse boundary condi-
tions, respectively. For a givenp, the dashed curves are, in order of
descending value ofkkl, for 2Fø sLydFø5F, and the solid curve is
for 4P.
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strip of the kagomé lattice. The results are sufficiently
lengthy that we list them in the Appendix. From these we
calculate

kklkag,2F
=

Nk2F

Dk2F
s5.1d

where

Nk2F = s1 − pd2s5 + 2p − p2 − 2p3 − 8p4 − 16p5 + 43p6 − 26p7

− 2p8 + 10p9 − 3p10 − 2p11 + p12d s5.2d

and

Dk2F = 5s1 − p4 − 2p5 + 10p6 − 10p7 + 3p8d. s5.3d

We plot kklkag,2F
in Fig. 7. The value ofpc,kag has been de-

termined numerically[23] as pc,kag=0.524 405 3s3d; at this
value ofp, our expression(5.1) for kklkag,2F

has the approxi-
mate value 0.229 18. Thekkl for this 2F kagomé strip has the
following expansions in the vicinity ofp=0 andp=1:

kklkag,2F
= 1 −

8

5
p +

2

5
p3 +

1

5
p6 + Osp7d, s5.4d

kklkag,2F
=

1

5
r2 +

8

5
r3 +

11

5
r4 −

4

5
r5 + Osr6d. s5.5d

The cluster number(5.1) has poles at

p . − 0.5470 ± 0.2862i, − 0.0363 ± 0.6583i,

0.7772 ± 0.5605i, 1.4728 ± 0.1486i . s5.6d

Of these, the first and last complex-conjugate pairs are clos-
est top=0 andp=1, respectively, and determine the radii of
convergence of the Taylor series expansions about these
points to be approximately 0.6174 and 0.4956.

We have also calculatedkkl for the 3F strip of the kagomé
lattice; this is plotted in Fig. 7.

B. 2P

For the 2P strip of the kagomé lattice we find

kklkag,2P
=

Nk2P

Dk2P
s5.7d

where

Nk2P = s1 − pd4s6 + 12p + 12p2 + 4p3 − 25p4 − 108p5 + 16p6

+ 472p7 − 706p8 + 320p9 + 286p10 − 352p11 − 194p12

+ 360p13 + 120p14 − 340p15 + 65p16 + 136p17 − 96p18

+ 24p19 − 2p20d s5.8d

and

Dk2P = 6s1 – 2p4 − 8p5 + 32p6 + 40p7 − 268p8 + 424p9

− 320p10 + 120p11 − 18p12d. s5.9d

A plot is given in Fig. 7. The cluster numberkklkag,2P
has

poles at

p . − 0.4660, 1.6556, − 0.3443 ± 0.2919i,

− 0.0057 ± 0.4751i, 0.5325 ± 0.484 55i,

1.0776 ± 0.4384i, 1.4785 ± 0.2140i . s5.10d

The first complex-conjugate pair is the nearest to the origin
and sets the radius of convergence of the small-p Taylor
series expansion ofkklkag,2P

as 0.4514, while the second-to-
last complex-conjugate pair is closest to the pointp=1 and
determines the radius of convergence of the series expansion
about this point to be 0.4453, to the stated accuracy.

To our knowledge, it is not known what the value ofkkl is
for the (infinite) kagomé lattice at the numerically deter-
mined critical percolation probabilitypc,kag. Assuming that,
for a given set of transverse boundary conditions and a given
pP s0,1d, kkl is a monotonically decreasing function of the
strip width Ly for this lattice, as we find for other lattice
strips, our results yield the upper boundkklkag, kklkag,2P
.0.111 49 at the valuep=pc,kag given above. Here we use
the result for the 2P strip since it is lower than the result for
the 2F and 3F strips.

VI. DISCUSSION

We first introduce a notion of effective coordination num-
ber. For a graphG the degree of a vertex is the number of
bonds connected to this vertex. Ak-regular graph is a graph
in which all of the vertices have the same degreek. Whether
a given lattice strip graph isk-regular depends on the longi-
tudinal and transverse boundary conditions; for example, it is
k-regular if one uses toroidal(doubly periodic) boundary
conditions. In the limitLx→`, since the longitudinal bound-
ary conditions do not affect the free energyfshGj ,q,vd, we
need only consider the effect of the transverse boundary con-
ditions. The effective coordination number is

FIG. 7. Plots ofkkl, as a function ofpP f0,1g, for infinite-
length, finite-width strips of the kagomé lattice. The dashed and
solid curves refer to free and periodic transverse boundary condi-
tions, respectively. For a givenp, the dashed curves are, in order of
descending value ofkkl, for 2Fø sLydFø3F, and the solid curve is
for 2P.
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keffshGjd = lim
n→`

2esGd
nsGd

. s6.1d

Clearly keff=k for a regular lattice. For regular lattice strips
with periodic transverse boundary conditions, the value of
keff is the same as the value for the corresponding two-
dimensional lattice. For strips with free transverse boundary
conditions, we have

keff„L,sLydF… = kLS1 −
a

Ly
D s6.2d

wherekL=4,6,3 forL=sq, tri ,hc and

asq=
1

2
, atri =

2

3
, ahc =

1

3
. s6.3d

For the cyclic self-dual strips of the square lattice, the single
external vertex connected to each of the sites on one side of
the strip has a degreeLx that diverges asLx→`. The LxsLy

−1d interior vertices have degree 4, while theLx vertices on
the rim have degree 3. Together, these lead, in the limitLx
→`, to the resultksq,sd=4. Finally, for the kagomé strips
with free transverse boundary conditions

keff„kag,sLydF… = 4S1 −
1

3Ly − 1
D , s6.4d

while for the kagomé strips with periodic transverse bound-
ary conditions,keff=4, the same value as for the infinite two-
dimensional kagomé lattice.

From our calculations we find a number of generic fea-
tures.

(1) We have shown thatkkl is a (real) analytic function of
p in the interval 0øp,1. At the critical percolation prob-
ability p=1 for these quasi-1D strips, our exact results forkkl
are also analytic, although some other quantities in percola-
tion, such as the percolation probabilityPspd and the cluster
sizeSspd are not, as is evident from the well-known 1D case.

(2) As the curves in the figures show, with an increase in
strip width Ly, kkl is consistent with approaching a limiting
function of p. This is in accord with one’s expectation.

(3) For a givenp in the interval between 0 and 1, and for
a given type of lattice strip, as the widthLy increases,kkl
decreases, so that the approach to the asymptotic value for
the 2D lattice is from above, in the cases that we have com-
puted. For strips with free transverse boundary conditions,
increasingLy increaseskeff, so the decrease ofkkl is associ-
ated with an increase in the effective coordination number.
This is reasonable, since, heuristically, for a fixed value ofp,
there is a greater probability of having a percolating cluster
on a lattice of higher coordination number, so that more sites
are part of this cluster and there are fewer separate clusters
per site. This is also reflected in the monotonic decrease of
pc,L with increasingkL for most higher-dimensional lattices.
(However, we recall that counterexamples to this general
monotonic decrease ofkkl with increasing coordination num-
ber are known[26].)

For strips with periodic transverse boundary conditions,
the decrease ofkkl at a fixedp with increasing widthLy is
not associated with an increase inkeff, sincekeff is constant
for these strips(and equal to the two-dimensional value);
here one may interpret the decrease as being simply due to a
reduction in the finite-width effects that enables the percola-
tion quantities to approach their two-dimensional values.

(4) For a given lattice type, we find some examples where
the curve forkkl calculated on a strip of widthLy with peri-
odic transverse boundary conditions will cross the curve for
kkl for the same lattice and a differentLy and free transverse
boundary conditions. For example, as is evident in Fig. 1, the
curve for kkl on the sq,2P strip lies below those forkkl on
the sq,sLydF strips at smallp, but sequentially crosses the
latter as p increases and lies above them(except for Ly
=1,2) as p→1−. Similar behavior is observed, e.g., on the
strips of the triangular lattice. These also constitute examples
of how kkl calculated on a strip with a larger value ofkeff

than that of another strip can be larger thankkl for the latter
strip. For instance,keff=k=4 for the sq,2P strip, which is
larger than the valuekeff=3.6 for the sq,5F strip; however,
kkl on the former strip is larger thankkl on the latter forp
*0.36. This dependence on transverse boundary conditions
is consistent with disappearing as the strip widthLy→`,
consistent with the approach to a single limiting functionkkl
for the corresponding 2D lattice. Although we have not
proved rigorously that the functionkkl obtained via this lim-
iting sequence(takingLx→` first and then takingLy→`) is
identical to the functionkkl obtained via the usual two-
dimensional thermodynamic limit( Lx→`, Ly→` with
Ly/Lx a nonzero finite number), this conclusion is consistent
with our findings.

(5) We have used the values ofkkl at p=pc,L as a measure
of how rapidly, for a givenp, the cluster number calculated
on infinite-length, finite-width strips approaches the value for
the two-dimensional lattice. These values are listed in Table
I. Even for the modest strip widths considered here, one sees
that (i) these values approach the known values ofkkl on the
corresponding two-dimensional lattices reasonably quickly,
and (ii ) this approach is more rapid when one uses periodic
transverse boundary conditions, as is expected, since the lat-
ter minimize finite-width effects. For example, for the strip
of the square lattice withLy=5 and periodic transverse
boundary conditions,kkl evaluated atp=pc,sq is about 15%
larger thankklc for the square lattice[24], while kkl for the
tri ,4P and hc,4P strips, evaluated at the respectivepc,tri and
pc,hc, are both about 17% larger than the corresponding val-
ues[24] kklc for the triangular and honeycomb lattices.

(6) We find that for these strips, the small-p series expan-
sions ofkkl have the leading terms

kkl = 1 −Skeff

2
Dp + ¯ , s6.5d

which are analogous to the structure that these series have for
regular lattices of dimensiondù2. Higher-order terms in the
series for the strips of small widths are not expected to co-
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incide with those in the series for the two-dimensional lat-
tices, and one sees that they do not.

(7) An interesting output of our analysis is the exact de-
termination, for various infinite-length, finite-width strips, of
the singularities ofkkl in the complex-p plane. As we have
shown, for many strips these(real and/or complex) singulari-
ties outside the physical intervalf0,1g occur sufficiently
close to the pointsp=0 andp=1 that they render the radii of
convergence of the respective Taylor series expansions about
these points less than unity, although the actual functionskkl
themselves are analytic functions onpP f0,1g. Although the
strip widths are probably too small to justify a detailed com-
parison with unphysical singularities for percolation quanti-
ties in two dimensions, this generic property—the presence
of unphysical singularities that determine the radii of the
Taylor series expansions about the pointsp=0 andp=1 to be
less thanpc for the given type of lattice—is similar to what
was found in analyses of series for the percolation problem
on two- and three-dimensional lattices[1].

(8) Finally, we have discussed how, for a given infinite-
length, finite-width strip, the unphysical singularities have a
connection with the locusBqn, which is the continuous accu-
mulation set of the zeros of the Potts model partition func-
tion in the p (or equivalently thev) plane obtained by first
letting n→` and thenq→1. In particular, we find that these
unphysical singularities lie onBqn. The noncommutativity of
Eq. (2.11) analyzed in Ref.[6] plays a crucial role here, since
Bnq, obtained by first lettingq→1 and thenn→`, is trivial.
Our results motivate further study on this topic.

VII. CONCLUSIONS

In summary, we have presented exact calculations of the
average cluster number per sitekkl for the bond percolation

problem on infinite-length, finite-width strips of the square,
triangular, honeycomb, and kagomé lattices, with both free
and periodic transverse boundary conditions. We believe that
these results are a useful extension beyond the one-
dimensional result toward two dimensions and provide in-
sight into the form ofkkl as a function of the bond occupa-
tion probabilityp.
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APPENDIX

In this appendix we give the free energy for the Potts
model on the 2F strip of the kagomé lattice. We find

fskag,2F,q,vd =
1

5
ln lk2F sA1d

where

lk2F =
1

2
fTk2F + ÎRk2Fg sA2d

with

Tk2F = v8 + 8v7 + v6q + 29v6 + 20v5q + 10v4q2 + 2v3q3

+ 42v5 + 61v4q + 54v3q2 + 28v2q3 + 8vq4 + q5

sA3d

and

Rk2F = v16 + 16v15 + 2v14q + 114v14 + 32v13q − 3v12q2 − 4v11q3 + 484v13 + 288v12q + 52v11q2 − 28v10q3 − 12v9q4 − 2v8q5

+ 1329v12 + 1572v11q + 1098v10q2 + 520v9q3 + 192v8q4 + 48v7q5 + 6v6q6 + 2196v11 + 4350v10q + 5196v9q2 + 4344v8q3

+ 2628v7q4 + 1114v6q5 + 312v5q6 + 52v4q7 + 4v3q8 + 1620v10 + 4572v9q + 7413v8q2 + 8284v7q3 + 6732v6q4

+ 4028v5q5 + 1766v4q6 + 556v3q7 + 120v2q8 + 16vq9 + q10. sA4d
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